Protein core

The amino acids in the interior are on average more hydrophobic than the residues on the surface

Protein core is the part of a folded protein with zero solvent accessibility

Accessible surface area (ASA) corresponds to the area traced out by the center of a probe sphere of radius 1.4 Å as it is rolled over the surface of the molecule of interest

"NACCESS" from J. Thornton computes the ASA

FIG. 7. Schematic representation of possible molecular surface definitions. A section through part of the van der Waals envelope of a hypothetical protein is shown with the atom centers numbered. The accessible surfaces generated by two probes of difference size, R_1 and R_2 , and the geometrical definition of contact and reentrant surfaces are shown. (Reproduced with permission from Richards.²²)

Example output of naccess

REM	EM Relative accessibilites read from external file "standard.data"											
REM	<pre>XEM File of summed (Sum) and % (per.) accessibilities for</pre>											
REM	RES	_ NUM	All-	-atoms	Tota	l-Side	Main-	-Chain	Non-	-polar	All	polar
REM			ABS	REL	ABS	REL	ABS	REL	ABS	REL	ABS	REL
RES	LEU	A 999	234.57	131.3	158.83	112.5	75.74	201.9	159.59	112.1	74.98	206.4
RES	MET	A1000	153.35	79.0	137.88	88.0	15.47	41.2	139.63	88.5	13.72	37.8
RES	MET	A1001	193.67	99.8	166.14	106.1	27.53	73.4	166.14	105.3	27.53	75.8
RES	HIS	A1002	133.92	73.2	118.50	80.6	15.42	43.1	80.36	82.7	53.56	62.5
RES	SER	A1003	56.05	48.1	37.72	48.3	18.33	47.7	32.20	66.3	23.86	35.1
RES	GLN	A1004	164.98	92.4	147.81	104.8	17.16	45.8	56.66	108.5	108.31	85.8
RES	LYS	A1005	72.98	36.3	72.98	44.7	0.00	0.0	47.24	40.5	25.74	30.6
RES	ARG	A1006	133.72	56.0	128.23	63.7	5.49	14.6	40.64	52.2	93.09	57.8
RES	VAL	A1007	1.54	1.0	0.00	0.0	1.54	4.1	0.22	0.2	1.33	3.7
RES	VAL	A1008	2.87	1.9	2.87	2.5	0.00	0.0	2.87	2.5	0.00	0.0
RES	VAL	A1009	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0
RES	LEU	A1010	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.0

ATOM	1	Ν	LEU	A 999	0.041	148.800	54.967	49.906	1.65
ATOM	2	CA	LEU	A 999	0.374	147.376	55.166	6.484	1.87
ATOM	3	С	LEU	A 999	0.199	146.548	53.888	0.757	1.76
ATOM	4	0	LEU	A 999	-0.859	146.033	53.570	25.076	1.40
ATOM	5	CB	LEU	A 999	-0.477	146.729	56.231	17.074	1.87
ATOM	6	CG	LEU	A 999	-0.139	146.132	57.568	14.939	1.87
ATOM	7	CD1	LEU	A 999	0.286	144.647	57.433	58.243	1.87
ATOM	8	CD2	LEU	A 999	0.947	146.895	58.330	62.090	1.87
ATOM	9	Ν	MET	A1000	1.294	146.400	53.124	4.553	1.65
ATOM	10	CA	MET	A1000	1.193	145.597	51.902	3.260	1.87
ATOM	11	С	MET	A1000	1.681	144.162	52.120	1.747	1.76
ATOM	12	0	MET	A1000	2.482	143.861	53.013	9.171	1.40
ATOM	13	СВ	MET	A1000	2.016	146.267	50.824	1.099	1.87
ATOM	14	CG	MET	A1000	1.364	147.492	50.072	33.384	1.87
ATOM	15	SD	MET	A1000	2.921	148.211	49.477	36.200	1.85
ATOM	16	CE	MET	A1000	3.093	147.338	47.917	63.938	1.87
								1	

Crystal structures show that protein main chain and side chains occupy almost every available space

The interior has a packing density comparable to that of organic solid and is denser than organic liquid

packing density = van der Waals volume/Voronoi volume

van der Waals volume is the volume actually taken up by atoms

Voronoi volume is the sum of the atomic volume, inner voids and the surface of empty spaces (as defined by the molecular surface)

organic solid 0.68 - 0.8

protein 0.72 - 0.77

If the core is so well packed, then is it difficult to find other combinations of amino acids to repack the protein core just right?

Poupon, COSB 14, 233 (2004)

Core residues are often conserved among related proteins

Structure and **stability** of a protein are strongly dependent on the arrangements and compositions of the hydrophobic core

The tendency for hydrophobic groups to aggregate is seen as "hydrophobic bond"

Figure 1. Schematic illustrating the formation of a hydrogen bond and a hydrophobic bond in the folding of a protein.

Pace et al, Faseb J 10, 75 (1996)

Model proteins in protein engineering studies

- **T4 lysozyme** : hydrolyzes the glycosidic bond between *N*-acetylmuramic acid and *N*-acetylglucosamine of peptidoglycan in (bacterial) cell wall
- Hen egg white lysozyme

• Barnase/barstar : ribonuclease from bacteria Bacillus

- hydrolyzes RNA
- Ribonuclease A
- Staphylococcus nuclease
- Protein G, L : binds immunoglobulin
- Lambda repressor : binds DNA from bacteriophage
- Bovine pancreatic trypsin inhibitor (BPTI)

Core packing

What factors are important when designing the protein core?

The core may either be described as:

-3D jigsaw puzzle, where every amino acid side chain has a unique place to go

-"**Oil drop**" that can alternate among many equivalent packing arrangements

Introduce random substitutions at seven positions corresponding to the protein core of the N-terminal domain of lambda repressor, and select for mutants that retain activity

Assay: functional lambda repressor will make bacteria resistant to lambda phage

Lim & Sauer, Nature 339, 31 (1989)

High throughput assay

development is often critical to the success of many protein engineering projects

The substitutions that retain activity consists of substitutions with :

Fully functional

LL

LL

LL

IL

L L

LL

LL

VMLL

Vol

549

567

549

538

538

549

549

560

549

531

556

556

567

585

556

526

 $\Sigma \Delta G_1$

14.4

15.2

14.5

18 36 40 47 51 57 65

MVF

MIF

муL

v

v

v

LI

MIF

MLL

MVLLL

ĩ LL

F

MTLLL

L v F ΓL

м

мv

MVFLL

v

V

v

ι I

r. M М v

1. V

LL

L V

L V

LI

Ala, Cys, Thr, Ile, Val, Leu, Met, Phe

Favorable free energies of transfer from water to organic solvent

Combination of volume, hydrophobicity, and steric is a good indicator of functional sequence

ALMVLLL 500 ILMVLLL 556 518 1 (V36 M40 V47) Applied constraints Experiment 548 585 8.000 (100%) None 574 Volume 5,848 (73%) 574 512 (6%) 574 Composition 544 Volume and composition 425 (5%) 556 Volume, composition, and steric: 538 $\sim 110(1.4\%)$ active sequences 574 fully functional sequences ~20 (0.3%) 526 538

Hydrophobicity scale

- 1. Janin, Nature, 277(1979)491
- 2. Wolfenden et al, Biochemistry 20(1981)849
- 3. Kyte and Doolite, JMB 157(1982)105
- 4. Rose et al, Science 229(1985)834

Designing the hydrophobic core

Barnase is a ribonuclease from bacteria Bacillus

Assay: If barnase is expressed in the absence of its inhibitor barstar, the protein will degrade RNA in the cell and thus kill the cell

The assay is sensitivity enough to detect a mutant protein with > 0.2% of the activity of wild type

Randomly mutate 12 of the 13 core residues to other hydrophobic residues

23% of all mutants retained enzymatic activity

Hydrophobicity is a sufficient criterion for constructing a core that is capable of supporting enzymatic activity

Axe et al. PNAS 93, 5590, (1996)

barnase

How does protein respond to core mutations

Substituting a hydrophobic residue with another hydrophobic residue may induce a volume change

Less disruptive substitutions (i.e. large residue to small residue) also introduces a volume change which further destabilizes the mutant

Construct six "cavity creating" mutants of T4 lysozyme L46A, L99A, L118A, L121A, L133A, F153A

Lysozyme	T_{m} (°C)	ΔH (kcal mol ⁻¹)	$\Delta\Delta G$ (kcal mol ⁻¹)
WT	53.5	130.0	0.7
WT*	51.8	118.8	0.0
L46A	43.2	89.8	-2.7
L118A	39.6	75.5	-3.5
L121A	42.5	81.0	-2.7
L99A	36.1	79.6	-5.0
L133A	42.9	91.5	-3.6
F153A	39.5	74.9	-3.5
L99A/F153A	10.0	6.0	-8.3

Eriksson et al, Science 255, 178 (1992)

Thermodynamic cycle

How to rationalize the stability difference between mutant with wild type

Lee, Protein Sci 2, 733 (1993)

For Leu \rightarrow Ala mutations, a cavity of ~ 24 Å³ remains For Phe \rightarrow Ala mutation, a cavity of ~ 150 Å³ remains

Parameterize the relationship between the decrease in stability ($\Delta\Delta G$) and the cavity volume (ΔV) or cavity surface area (ΔS) by a straight line

 $\Delta \Delta G = a + b \Delta V$ $\Delta \Delta G = c + d \Delta S$

a = c = -1.9 kcal/mol (roughly the transfer free energy of leucine from water to organic solvent with respect to alanine)

 $b = -0.024 \text{ kcal/mol/Å}^3$ $d = -0.020 \text{ kcal/mol/Å}^2$

Energetics of burying a hydroxyl group

Introduce a hydroxyl group by replacing 9 Ala with Ser and 3 Val with Thr in T4 lysozyme

Measure the stability of the mutants in vitro

Most destabilizing mutation : V149T ($\Delta\Delta G = 2.8 \text{ kcal/mol}$)

Crystal structures of the mutants are similar to that of wild type

Blaber et al, Biochemistry 32, 11363, (1993)

The cost of burying a hydroxyl group depends on solvent accessibility

If the residue is exposed, the mutant is destabilized by < 0.5 kcal/mol

If the residue is fully buried, the mutant is destabilized by ~ 1- 3 kcal/mol

Blaber et al, Biochemistry 32, 11363, (1993)

Charged residues in the core

Charged residues are usually found on the surface

Exceptions include catalytically important residues

HIV protease

How bad is it to bury a charged residue in the core?

- Depends on the polarizability of the core
- Typically epsilon (dielectric constant) is assumed to be 2 8
 - » Gilson et al, JMB 184, 503 (1985)
- But can be as high as 12
 - » Dwyer et al, Biophys J 79, 1610 (2000)

$$E_{elec} \propto \frac{q_1 q_2}{\varepsilon r_{12}} = \frac{\left(\frac{q_1}{\sqrt{\varepsilon}}\right) \left(\frac{q_2}{\sqrt{\varepsilon}}\right)}{r_{12}} = \frac{\widetilde{q_1 q_2}}{r_{12}}$$

Energetics of burying a charged group

What are the energetic and **structural** consequences of burying a charged group in the core?

Introduce a charged residue in the core of T4 lysozyme

- Met102→K (M102K) : 35% activity
- Leu133→D (L133D) : 4% activity

M102K is less stable by 6.9 kcal/mol at pH 5.3

pKa of K102 ~ 6.5

L133D is less stable by 5.7 kcal/mol at pH 6.5

pKa of D133 ~ 6.2

Dao-pin et al, Biochemistry 30, 11521 (1991)

Buried salt bridges

Hydrophilic and charged residues are tolerated in the core when they pair up and all hydrogen bonding needs are met

Ion pairs or salt bridge network

Are buried ionic pairs equivalent to hydrophobic pairs?

Is Arg *** Glu (salt bridge) equivalent to a van der Waals pair, e.g. Leu – Val ?

Computation suggests burying salt bridges may be energetically unfavorable

since it involves desolvation of ionic groups

Moore et al, Science 240, 314 (1988)

Arc repressor of bacteriophage P22 is a homodimeric DNA binding protein Contains a buried salt bridge network contiaining

- R31 (37% solvent accessible)
- D36 (0%), and R40 (27%)

Introduce random mutations at these three positions and look for activity $20 \times 20 \times 20 = 8,000$ possible mutants

Assay : functional Arc dimer will make E.coli resistant to P22

Waldburger, et al NSB 2, 122 (1995)

M31-Y36-L40 is 3.9 kcal/mol more stable than wild type and has full activity

Simple hydrophobic interaction can contribute more to stability than buried salt bridges, while offering conformational specificity required for function

However, internal salt bridges may confer specificity by discriminating against alternate conformations

Buried water

There are many "packing defects" and cavities in the protein core

Some cavities contain water molecules Hubbard et al., Protein Eng 7, 613 (1994). Williams et al., Protein Sci 3, 1224 (1994)

Hubbard & Argos, Curr Op in Biotech 6, 375 (1995)

Structural stability from bound water

Bound water is close to energy neutral

entropic cost of immobilizing a water molecule ~ 2 kcal/mol at 300 K All amino acids (even hydrophobic residues) contain polar atoms Buried polar atoms must be H-bonded

Water can satisfy the H-bonding needs of turn/loop/coil residues Distribution of bound water varies with secondary structure

- B : Isolated β bridge
- E : Extended strand
- G/I: 3-helix/5-helix
- $\mathsf{H}:\alpha\text{-helix}$
- S : Bend
- T: Hydrogen-bonded turn
- U : Undefined

Park & Saven, Proteins 60, 450 (2004)

Destabilizing barnase with a single mutation

Identifying a single point mutation that abolishes function can provide information on the sequence-structure-function relation

All inactivating substitutions are:

replacement of a catalytically important side chain replacement of a substantially buried side chain introduction of Pro residue replacement of a Gly residue

Use a functional assay based on the RNase activity of barnase to identify structure-function coupling that isn't apparent from the structure

G52V mutant has 1000 fold reduction in activity in vivo, and is destabilized by 8.4 kcal/mol compared to wt

Destabilization is likely to due to steric clash with neighboring side chains

Figure 1. Irregular hydrogen bonding between the first two strands of the barnase β -sheet (Lubienski, 1994). The left strand (strand 1) contains the β -bulge involving residues 53 and 54.

Axe et al, JMB, 286, 1471 (1999)

Stability and proteolytic susceptibility

We would expect that a less stable protein would be more readily degraded in vivo

Do pulse-chase experiment of lambda repressor

e.g. label proteins synthesized between T=30 - 32 min with radioactive **35S**

Monitor the amount of the protein over time and correlate with thermal stability

A complementary second mutation (ND52) increases the stability of a mutant as well as the half life of the protein

Thermal stability influences the average lifespan of a protein molecules since proteolysis likely occurs while the protein is in an unfolded state

Disulfide bond

Disulfide bond is a **covalent bond** formed between two cysteine side chains with the bond energy of ~ 70 kcal/mol

There are strict structural requirements for ideal disulfide geometry

Fig. 1. Optimal stereochemistry of a disulphide bond. The two possible torsion angles about the disulphide bond of $+90^{\circ}$ and -90° are equally favourable.

Creighton, BioEssays 8, 57 (1988)

Both isomers (right-handed and left-handed) are observed in natural proteins

Particularly important in small proteins that lack genuine hydrophobic cores

Protein disulfide isomerase (PDI) catalyzes internal disulfide exchange and helps correct wrong disulfide bonds that may form during folding

In the presence of a thiol, the disulfide undergoes an exchange reaction :

R1-S-S-R1 + R2-S⁻ ←→ R1-S-S-R2 + R1-S⁻

A disulfide bond can stabilize a protein by 2 - 5 kcal/mol by reducing the conformational flexibility of the unfolded peptide chain, and thus destabilizing the denatured state of a protein relative to the folded state

$$\Delta S = -2.1 - \frac{3}{2} \ln(n)$$
 Betz, Protein Sci 2, 1551 (1993)

However, a crosslink can also affect the folded states—the effect of a crosslink on conformational stability depends on the change in the effective concentration of the thiols between the unfolded and folded states

Removing native disulfides

Removing disulfide bonds usually destabilizes the protein

HEW lysozyme has three disulfides. Removing these disulfides destabilizes the protein and reduces the melting temperature by 25 °C

- Cooper et al, JMB 225, 939 (1992)

Removing disulfides in interleukin-4 significantly disrupts the integrity of its hydrophobic core

- Vaz et al, Protein Sci 15, 33 (2006)

Changes in NMR crosspeaks suggest altered dynamics

Binding by **ANS** (8-anilino-1naphtalenesulphonic acid), which fluoresces when bound to the hydrophobic patches of a protein

Enthalpy v. entropy

Do disulfides stabilize proteins only by reducing the entropy of the denatured state?

Doig and Williams (JMB, 217, 349 (1991)) argues that disulfide bonds destabilize folded structure entropically but stabilize them enthalpically

C77A and C77/95A mutants of human lysozyme are destabilized by \sim 4.6 kcal/mol, most of caused mostly by an enthalpy change

- Kuroki et al, Biochemistry 31, 8323 (1992)

Differential scanning calorimetry can measure thermodynamic parameters, including

- melting temperature (T_m)
- enthalpy change (Δ H)
- heat capacity change (Δ Cp)

$$\begin{split} \Delta_{\rm d} H(T) &= \Delta_{\rm d} H(T_{\rm d}) + \Delta_{\rm d} C_{\rm p}(T - T_{\rm d}) \\ \Delta_{\rm d} S(T) &= \left[\frac{\Delta_{\rm d} H(T_{\rm d})}{T_{\rm d}} \right] + \Delta_{\rm d} C_{\rm p} \ln \left(\frac{T}{T_{\rm d}} \right) \\ \Delta_{\rm d} G(T) &= \Delta_{\rm d} H(T) - T \Delta_{\rm d} S(T) \end{split}$$

Stabilization by disulfide

If removing a native disulfide destabilizes a protein, does introducing a new disulfide bond stabilize the protein?

Interstrand disulfides are rare (3% of all disulfides) and usually occur between non hydrogen bonded pairs of antiparallel strands

Introducing cysteins in thioredoxin can change stability

- Chakraborty et al Biochem 44, 14638 (2005)

Folding of BPTI

- Model system for studying disulfide bond formation—58 residues
- Contains three disulfides for stability
 - Reduction of all three disulfides results in complete unfolding
- Formation of disulfides poses a challenge since there are many potential combiantions

